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Two methods to construct Markov partitions for two-dimensional systems are 
proposed. One is based on the existence of a known, or easily accessible by 
numerical analysis, hyperbolic fixed point; the other one, which is more general, 
is derived from Bowen's proof of the existence theorem of Markov partitions for 
hyperbolic systems. The methods are successfully implemented in two cases of 
hyperbolic systems: the linear automorphism (~ ~) of the 2-torus and a nonlinear 
perturbation of it. The methods are applied also to the H6non mapping. In such 
nonhyperbolic case, however, they produce partitions of the H6non attractor 
which lack some essential properties. 
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1. I N T R O D U C T I O N  

One approach  to the study of a dynamical  system is th rough  symbolic 
dynamics. (1'2) In such context the key not ion is that  of  Markov  partitions. 
Bowen ~3/ showed that  Axiom A diffeomorphisms admit  M a r k o v  parti t ions 
of diameter less than any given 6. Bowen's constructive proof  generalizes 
and at the same time simplifies a previous p roof  by Sinai. (4'5) The idea of 
Markov  parti t ions as a way of codifying large classes of  measures by a 
symbolic language was introduced by Adler and Weiss (6) and then exten- 
ded by Sinai. (7) 

The purpose of this paper  is to describe two methods  for the construc- 
tion by computer  of Markov  parti t ions for two-dimensional  systems. The 
first method,  which is very simple, applies to t ransformations endowed with 
an a priori  known hyperbolic fixed point  and consists essentially in tracing 
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two pieces of the stable and unstable manifolds through this point. The 
other method is inspired by the proof of Bowen's theorem and, more 
specifically, by its simplified version given in Ref. 2 in the two-dimensional 
case. Starting from a conveniently chosen initial covering, first one makes it 
acquire some desired properties by a convergent process of subsequent 
approximations, then a Markov partition can be easily derived. Both 
methods are proven to be rather efficient through a number of successful 
experiments on two different hyperbolic systems: the linear automorphism 
(~ ~) of the 2-torus and a nonlinear perturbation of it. Furthermore, the 
methods are applied in the case of a nonhyperbolic system: the H6non 
mapping/81 They still work, but produce partitions of the H6non attractor 
which fail to have some important properties, as it can be expected from 
the fact that the H6non mapping should not admit a finite Markov par- 
tition (see Collet and Levy(9]). 

2. H Y P E R B O L I C  S Y S T E M S  A N D  M A R K O V  P A R T I T I O N S  

In this section we shall present a minimal number of basic notions that 
we consider essential to the understanding of the applications described in 
the next sections. The exposition, based on Ref. 2 and sometimes on Ref. 3, 
will be made just having in mind the applications. 

Def in i t ion  1. Let (~, S) be a dynamical system on some compact 
Riemanian manifold ~ of class Coo with S a diffeomorphism of class C ~176 
(~, S) is called a hyperbolic system if 

(a) There exist a constant y > 0 and, for every x e ~,  two manifolds 
WS(x) and W~(x), which are of class C ~ in a neighborhood of the ball 
B~(x) (center x and radius 7) and with tangent plane at x depending on x 
with H61derian regularity. Furthermore, the manifolds WS(x) and W"(x) 
are transversal at x and have dimensions which are complementary and 
positive. 

(b) If W~(x) is the connected part of WS(x) n B~(x) containing x and 
W~(x) is the connected part of W~(x)n By(x) containing x, then 

S(W~(x))c m~(Sx), s-1m~(x)c m~(s ix) 

(c) There exists a constant 2 < 1 such that, for any n >~ 0, 

d(S"y, S"z)<~2"d(y, z), Vy, ze  WE(x ) (2.1) 

and 

d(S "y, S "z) <~ Z~d(y, z), 

where d is the metric on/2.  

Vy, z e W~(x) (2.2) 
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(d) There exists a constant /3, 0 </3 < 7, such that, if x, y ~/2 and 
d(x, y)</3,  the set W~(x)n W~(y) consists of exactly one point Ix, y]  
which depends continuously on x and y. 

W~(x) and W~(x) are called the stable and unstable manifold of x, 
respectively. Under the action of S, two points of the stable manifold 
approach each other with exponential rate [property (2.1)], while two 
points of the unstable manifold diverge with exponential rate 
[property (2.2)]. For this reason they are sometimes also referred to as 
contracting and expanding manifold. 

Definition 1 contains some redundant elements and is not as general 
as possible. For a more general definition of hyperbolic system the reader is 
referred to Ruelle. (1~ 

Def in i t i on  2. A nonempty set R c (2  is an S rectangle for the 
hyperbolic system (/2, S) if 

(a) R = int(R) (R is the closure of its interior) 

(b) d iam(R)<f l  

(c) x , y ~ R ~ [ x , y ] E R  

Let 

U R = { x e R: x r of ( W~( x ) n R ) in W~(x)} 

OUR= { x e R :  x r interior o f ( W ~ ( x ) n R ) i n  W~(x)} 

L e m m a  1. The boundary dR of R is 0~R w0UR. 

Def in i t i on  3. A finite covering N = ( R 1 ,  R2, . . .  , R N )  of /2  by S rec- 
tangles is a rectangle partition of (/2, S) if Ri n Rj = OR~ n ORj, i ~ j. 

Def in i t ion 4. 
a Markov partition if 

( a )  S OSRi c OsRi, S -1 OURi OuRi 
i 1 i=1  i 1 

(b) for i , j =  1 ..... N, Ric~SRj is connected 

A rectangle partition ~ = (R1, R2,..., RN) of (~2, S) is 

(2.3) 

(2.4) 

Theorem 1. Given a hyperbolic system (12, S) and a constant 
6 > 0, there exists a Markov partition of/2 by S rectangles of diameter less 
than 6. 
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L e m m a  2. If 2 =  (01 ,  Q2 ..... QN) is a Markov partition for the 
hyperbolic system (f2, SM), M ~> 2, then 

~ =  R:R= ~ SkQk, Qke~ (2.5) 
k = O  

is a Markov partition for (f2, S). 

D e f i n i t i o n  5. Given a rectangle partition ~ =  (RI, R2,... , 8N) of 
(f2, S), its transition matrix is the (N x N) matrix T of elements 

0 if int(8i) c~ int(S-~Rj) = ~b 
t0.= 1 if int(R~)c~int(S-1Rj)#q~ 

D e f i n i t i o n  6. If ~ =  
(f2, S), an (N, S) history of a 
{ 1, 2,..., N} z such that 

x e  

D e f i n i t i o n  7. If N =  
(f2, S) with transition matrix 
if 

(R1, R2,..., RN) is a rectangle partition of 
point x ~ f2 is a doubly infinite sequence g 

S-JR~j, Vj~Z 

(81,  82,... , RN) is a rectangle partition of 
T, a sequence ~ {1, 2 ..... N} z is T compatible 

+0(3 

17I t~j~j+, = 1 
j =  oo 

Remarks. Let N = (R1, R2 ..... RN) be a Markov partition of a hyper- 
bolic system (f2, S) with transition matrix T. If _r is the set of all the T- 
compatible sequences, for every ~ e Z the set 

+ o o  

x(~)= 0 S-~R~ 
k = - - o o  

is nonempty and consists of a single point x. Then, every a E Z" is the (N, S) 
history of one point x e f2. On the other hand, for every x e f2 there exists 

f2/I I+~ S-ka,  c3= at least one ~ e Z  such that X ( ~ ) = { x } .  If x e  / w k = - ~  
UN=I c3Ri, ~ is unique, while if x ~ 0~-~_~ S-%~ there are more than one 
(at most some no). Hence, if one is interested in measures which give 
measure zero to ~, as it is often the case, the correspondence between Z" 
and O is almost everywhere one-to-one. Then, roughly speaking, the 
sequences of symbols of Z reproduce the dynamics generated by S on f2. 
For this reason the Markov partition is said to be generating. The transfor- 
mation X: Z ~ f2 and its "inverse" transformation are called the codes of 
the symbolic dynamics of S with respect to ~. 
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About condition (2.4) of Definition 4, it implies that, if t o. = 1, S - I R j  
crosses Ri only once (as well as SRi  does with respect to Rj). This guaran- 
tees the fact that X(a) consists of exactly one point. If this is not the case, 
the partition is nongenerating. 

Suppose now that the dimension of s is two. Furthermore, we can 
consider partitions which consist only of connected S rectangles without 
losing generality. Every such rectangle R can be represented as a pair of 
"segments," one of the stable manifold, the other one of the unstable 
manifold. More precisely, if x s int(R), and 

C = W~(x) ~ R, D = W~(x) c~ R 

it follows 

R = [ C , D ] =  U [Y,Z] (2.6) 
y ~ C  
z ~ O  

The boundary OR is composed of four connected sides, two of the 
stable manifold, 0~R, and two of the unstable manifold, 0~R, with k = 1, 2. 
If we consider the boundaries 0C and c~D of the segments C and D, 

OC= {y~ C, y q~int(C)}, ~ D =  { z e D ,  z q~int(D)} 

both of them consist of two points, 0kC and 0kD, k = 1, 2, respectively. So, 
we can define 

0~R=  [0kC , D],  0~R = [C, 0kD ] 

In the following we shall often refer to the 0~R (0~R), k = 1, 2, as the stable 
(unstable) sides of R. 

Finally, relations (2.3) are equivalent to the following: 

P r o p e r W  1. For any i E { 1 , 2  ..... N} and for any k e { 1 , 2 }  there 
exist i', i " e  {1, 2,..., N} and k', k "e  {1, 2} such that 

S O~Ri ~ O~,Ri,, S 1 O~Ri ~ O~,,Ri,, (2.7) 

3. T W O  M E T H O D S  TO C O N S T R U C T  M A R K O V  PARTIT IONS 
OF T W O - D I M E N S I O N A L  S Y S T E M S  

3.1. First M e t h o d  

It applies only in the case when the transformation S has an easily 
accessible (from the numerical viewpoint) hyperbolic fixed point whose 
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stable and unstable manifolds separately cover O densely. Let z* be such a 
point and W s (W u) its stable (unstable) manifold. If x e  W s ( y e  liP'), let 
W~ (Wy) represent the segment of W s (W") included between z* and x (y). 

If xt and x2 are points of W" symmetrically placed with respect to z*, 
then either 

w~ w~, s( w~ 2) = WSx2 s( x,) = , (3.1) 

o r  

W s  s s( ~)~ w~, s(w~)~ w~ 1 (3.2) 

holds. 

3 2 

(a) 

(b) 

Fig. 1. (a) The partition N =  {R1, R2, R3} of 
(f2, S) proposed by Arnold and Avez in Ref. 11; 
(b) image of N under S 1. The comparison of 
part (a) with part (b) provides the transition 
matrix T: tll = t12 - /23 = t31 = 0, t13 = t2i = / 2 2  

/32 = 133 ~ 1. 
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Analogously, if Yl and Y2 belong to W" and are symmetrically placed 
with respect to z*, then either 

o r  

S-~(Wyl)C g'y,, S l(Wy2)C Wy 2 (3.3) 

S-I(Wyl) c Wy 2, S l(Wy2) c W"yl (3.4) 

holds. 
The idea for the construction of a Markov partition is implicit in these 

considerations. Tracing from z* the two branches of W ~ and the two 
branches of W" and making each branch of W s end onto W ~ and, conver- 
sely, each branch of W u end onto W ~, if each branch is roughly as long as 
the symmetric one, a rectangle partition is obtained which satisfies 
property (2.3). If the partition is sufficiently fine, also property (2.4) holds 
and it is a Markov partition. For instance, the 3-rectangle partition given 
by Arnold and Avez Im for the automorphism (I ~) of the 2-torus can be 
obtained in this way (Fig. la). It is not a Markov partition because its S 
rectangles are too large and cause two intersections Ri~  S-1Rj to be dis- 
connected (compare Fig. lb with Fig. la). However, if one prolongs the 
four branches of the manifolds up to the next intersection, the partition 
becomes a Markov partition (Fig. 2). 

Concerning the method as it has been proposed, we note that for most 
transformations the tracing from z* of all the four branches of the 
manifolds is not strictly necessary. As a matter of fact, we can omit one 
branch of W s if property (3.1) holds or, alternatively, one branch of W" if 
(3.3) is verified. 

Fig. 2. Markov partition of (f2, S) by seven 
rectangles. 
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3.2. Second M e t h o d  

The proof of Theorem 1, due to Bowen, ~3) is a simple constructive 
proof. Referring to it as exposed by Gallavotti in the two-dimensional 
case, ~2) we can derive an algorithm for the construction of a Markov par- 
tition for any two-dimensional hyperbolic system. Such an algorithm can 
be summarized in four steps: 

(1) Choose a suitable rectangle covering d of (2. 
(2) Modify d into d *  through a convergent process of successive 

approximations. 
(3) Derive a rectangle partition ~ from the limit covering d * .  
(4) Check whether ~ satisfies property (2.3) and (2.4). 

After remarking that the algorithm may fail in producing a Markov 
partition only in the case of an initial covering which is not sufficiently fine, 
let us try to define the four steps with only a few details. 

Step 1. Consider a rectangle covering ~r  (A1,A2 ..... AL) of (2 
with the property that every point x ~ (2 is interior to at least one Aj. As a 
consequence of this condition there exists a positive constant a such that, 
for every x ~ (2, there is a rectangle Aj(x/containing x and all the segments 
W~(y) and W~(z) of length 2a, which are obtained by considering all the 
points y ~ W~(x)c~ Aj(~) and all the points z E W~(x)c~ Aj(~. 

S t e p  2. Let d ~ = {Aj = A ~ = [C ~ D ~ }j= L....L. For  every j, consider 
SC ~ As a consequence of the expansion, SC ~ is a "long" line. Find a cover- 
ing of SC ~ which consists of kc( j )  elements of ~r say, Ai ~ 
A ~ A ~ .Choose the A~ in such a way that the distance between SC ~ 

i2 ~'"~ lkc(i) 
u 0 and the "parallel" unstable sides 0tAih, I=  1, 2, h = 1 ..... kc(j),  is not less 

than a. Let the two end points of SC ~ S 01C ~ and S ~2 C~ be covered only 
o by A ~ and Ai ~ respectively. Generally, SC ~ l =  1, 2, does not cross Aei com- 

pletely, therefore S ~lC ~ has a positive distance dl from the stable side of A ~ 
that does not cross SC ~ 

Lengthen C ~ so that also A ~ and A~ are completely crossed, which 
means that we substitute C9 by 

.I 

k c ( j )  

c 1= U s - ' ( [ c ,  ~ o o 
h = l  

Analogously, after finding a covering A~I,..., Aihocj~ for S ID~ j =  
1 ..... L, replace D ~ by 

k D ( j )  

D)= ~ S ( [S  1D~176176 
h = l  
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So, we can substitute the initial covering d ~ by the covering d 1, 
defined to be 

ag 1= {A) = EC], D)] } j=  ,,...,z 

The process can be iterated to produce a sequence of coverings d ~ 
which may converge to a covering d * .  The convergence is guaranteed if 
"diam(A;)/2 is sufficiently smaller than a" (see Ref. 2). However, this con- 
dition is usually not necessary. In fact, we shall see later that in all the cases 
we consider even an initial covering by very few rectangles gives rise, 
independently of the value of a, to a convergent process. In this case the 
convergence rate is geometric by a factor L 

Two remarks have to be made. One regards the choice of the extreme 
elements A~' that determine the prolongation of each side for all the rec- 

lk 

tangles of the coverings d n, n = 0, 1 ..... A standard choice corresponds to 
minimizing the distances dr. A different choice, however, can be made at 
the first iterations in order to produce a Markov partition which is "bet- 
Ler, e.g., by fewer or more balanced rectangles. The second remark con- 
cerns the substitution of C] by C} '+1 and D] by D~ +1. There are two 
possible ways of operating. One consists in making the substitutions after 
the computation of all the C] + l's and the Dj" + 1,s, the other one consists in 
replacing each C] (D] ) jus t  after computing C~ +1 (D]+I). Usually the 
correctness of the final result is not invalidated by the way we operate, even 
if different limit coverings can be obtained. 

S t e p  3. Consider the finest partition of f2 which is obtained by 
intersecting the elements of d *  in all the possible ways. In doing so we 
obtain a partition ~*,  which satisfies relations (2.7), and then relations 
(2.3), but ~*  is not necessarily made only by S rectangles. It may happen, 
in fact, that in some vertex both stable and unstable manifolds are 
interrupted, causing property (c) of an S rectangle to fail. In such a case we 
need a further operation in order to obtain a rectangle partition 
from N*. For each "anomalous" vertex we must extend at least one side by 
continuing it along the stable (unstable) manifold, until it meets the nearest 
unstable (stable) side of some other rectangle. By considering all the 
possible intersections of the elements of the covering N* after such a 
prolongation of their sides, we obtain a rectangle partition ~.  

S t e p  4. The check of condition (2.3), which is requested only in the 
case that some side has been extended, and that of condition (2.4) do not 
present any problem if a videographic device is available. Concerning the 
former check, it must be also remarked that it would be made unnecessary 
by the condition "diam(Ai)/,~ sufficiently smaller than a." This condition, in 
fact, guarantees the preservation of property (2.3) during the operation of 
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prolonging the sides, just as it was a sufficient condition for the con- 
vergence of the iterative procedure. 

We remark again that if either check of Step 4 fails, the whole process 
has to be repeated with a finer initial covering. 

Lemma 1 suggests an alternative use of the two methods that we have 
just described. Namely, we can first construct a Markov partition for the 
system (.(2, sM), M>~ 2, then obtain one for (g2, S) through the refinement 
(2.5). The motivations for considering S M rather than S are different for the 
two methods. Concerning the first method, the most reasonable motivation 
could be the fact that no unstable fixed point exists, while there exists an 
unstable cycle of period M (with M, hopefully, not too large). The second 
method, instead, may fail on ((2, S) owing to the fact that, even with a very 
fine initial covering, diam(Aj)/2 is not sufficiently smaller than a, which 
makes it necessary to work with S M. A further reason for using S M could 
be the gain in the convergence rate of the iterative procedure: the geometric 
ratio becomes in fact 2 M. 

4. C O M P U T E R  E X P E R I M E N T S  

This section will be devoted to illustrating some experiments made by 
using the methods previously discussed. Our object is to demonstrate that 
both methods work and can be applied successfully in different situations. 
Considering that the second method is more general and more difficult to 
be implemented on a computer, we shall spend some space to describe the 
computational details that concern it. We stress however the fact that no 
attention will be paid to those details that appear to be only technicalities 
of programming solvable in several different ways. 

To begin with, we consider a simple hyperbolic system (s S), whose 
importance is emphasized by Arnold and Avez in their book311) f2 is the 
two-dimensional torus T 2= [0,2rc] x [0,2~z] and S is the linear 
automorphism defined by the matrix, also labeled S, (~ 21). A point x =  
(xl, x2)~f2 is transformed by S into the point x ' =  (x I + x2, x~ + 2X2)~(2 
by identification of the coordinates that differ by 27c. The stable manifold 
WS(x) and the unstable one W"(x) through the point x are the two straight 
lines, densely covering f2, with the direction of the eigenvectors of the 
matrix S. WS(x) is individuated by the vector Vl associated with the eigen- 
value 21 = 2 < 1, and W"(x) is individuated by the vector v2 associated with 
22 = 1/2 > 1, where 

( )  (1 )  11, v2= 
2 =  ( 3 - x ~ ) / 2  

~ - 1  
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The transformation S, which is area preserving, has an unstable fixed point 
at the origin. 

The construction of a Markov partition for (t2, S) is considerably 
facilitated by the fact that the manifolds are straight lines and, moreover, 
by the fact that an S rectangle is a rectangle in the usual meaning. Adler 
and Weiss (12) ga'~e first a very simple example of Markov partition for 
(s S) and any other ergodic "linear automorphism" of the 2-torus. Here 
we have already shown a Markov partition for (O, S) (Fig. 2), which was 
obtained by using the first method. Obviously, a partition as fine as desired 
can be easily constructed by tracing conveniently long branches of 
manifolds through the origin. 

The application of the second method to (s S) represents a useful 
way to become familiar with the method. A preliminary problem to be 
solved regards the representation of an S rectangle inside the computer. Let 
(Xl, x2) be the coordinates of a generic point P~s and {Ri,..., RN} the set 
of S rectangles we are concerned with. We shall represent Ri through a pair 
of two opposite vertices: for instance, the bottom vertex V ) and the top- 
most one V~, V~ being the vertex from which both sides develop with 
increasing x2. The representation Ri= (V~, V~) is very convenient and 
allows to pass easily to a form like (2.6). 

The choice of the initial covering d o of the torus can be made quite 
arbitrarily. We shall explain an easy technique to obtain initial coverings 
by S rectangles of diameter as small as one likes. Consider the segment AB 

of the unstable manifold which divides the square [0, 2~] x [0, 2~] into 
two equal parts. Trace the four segments of the stable manifold that con- 
nect the middle point of each of the four sides of the square with AB. 

Finally, extend AB in both directions until it meets one segment of the 
stable manifold. This way we obtain a partition No of s into three S rec- 
tangles (Fig. 3). By lengthening each side of each rectangle in both direc- 
tions by an arbitrarily chosen quantity a, a covering M* (see again Fig. 3) 
is produced with the desired property that every point x ~ f2 is internal to 
at least one rectangle at a distance not less than a from its boundary. If we 
partition each rectangle of Mo into two equal parts by halving the two 
longer sides, we obtain a partition ~1 by six S rectangles. By further par- 
titioning this way, we can derive a partition ~i, and then a covering M*, by 
3- 2 i S rectangles. Most of our experiments were made by assuming some 
~*  as initial covering. 

As far as steps 2 and 3 of the algorithm are concerned, their implemen- 
tation involves some technical problems which derive mainly from the fact 
that we are dealing with a torus. They can however be overcome without 
too much effort, and a very efficient program for computing and drawing 
Markov partitions of (O, S) can be carried out. The iterative process is 
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Fig. 3. The partition -~'o (dashed line) and 
the rectangle covering N'~' corresponding to 
a-0.3 (solid line)..N0 includes the segment 
AB. 

stopped when all the prolongations of the sides become less than a 
prescribed tolerances.  The check of property (2.4) is performed by 
separately drawing the image of each rectangle of the final partition on the 
partition itself. 

We computed several Markov partitions, in particular the ones 
associated with the initial coverings ~ * ,  N*, and N* with a = 0.01, a = 0.1, 
and a = 0.4. In none of these cases the operation of prolonging the sides 
after the convergence was needed. On the contrary, the prolongation was 
necessary in a few cases of initial coverings which, having been chosen in 
some random way, did not exhibit any symmetry. This supports the 
statement that, the more randomly the initial covering is taken, the more 
the presence of anomalous vertices in the limit covering is likely to occur, 
so making the prolongation of some sides necessary. 

Using a tolerance e =  10 lo, the number of iterations necessary to 
reach the limit covering was nearly always 25, consistent with the fact that 
the convergence is geometric with ratio 2. The check of relations (2.3) 
showed that they are always satisfied with an accuracy of the same order 
of cc Also the transition matrix T and their eigenvalues were computed. In 
all cases the largest eigenvalue of T, whose logarithm provides the 
topological entropy of the dynamical system (s S), which in this case is 
the same as the maximum metric entropy, was equal to 1/2, as it must be 
(see, for instance, Refs. 1 and 6). Figure4 shows the three Markov par- 
titions that correspond to N*,  N'*, and N* with a=0 .1  and consist of 7, 
15, and 35 S rectangles, respectively. 

Still using the second method, we made some experiments also for S 2. 
In this case the convergence was obviously faster by a factor 1/2, but the 
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(a) 

(c) 

(b) 

Fig. 4. Three Markov partitions of (D,S), 
obtained by using the second method, by (a)7, 
(b) 15, and (c) 34 rectangles, respectively. 

inconvenience of attaining a nongenerating Markov partition could occur, 
particularly if one assumed an initial covering of very few rectangles. 
Figure 5 represents a nongenerating partition that can be obtained by 
starting from a 3-rectangle covering. The largest eigenvalue of its transition 
matrix T is less than 1/22, which in this case means that at least one rec- 
tangle is crossed more than once by the image of some rectangle, as it is 
shown in the picture. A generating Markov partition of (12, $2), derived 
from an initial covering by six rectangles, is displayed in Fig. 6. We note 
that now the largest eigenvalue of T is exactly 1/22. 

The partitions obtained by working on S 2 can be used to construct 
Markov partitions for (12, S) through the refinement (2.5). A remark, 
which holds in general, can be made about the two partitions of (12, S) 
obtainable from the ones of Figs. 5 and 6. Without actually constructing 

822/40/1-2-6 
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Fig. 5. Nongenerating Markov partition of (~2, S 2) by 22 rectangles. The hatched rectangle, 
which is thin and long, is the inverse image of the rectangle A. It crosses the rectangle B twice. 

them, we can count  the number  of ones in the transit ion matrices relative 
to the two parti t ions for S 2. This way we know that  the number  of the S 
rectangles composing the M a r k o v  parti t ions for S is larger than 151 in the 
former case and exactly 232 in the latter. Therefore, the number  of elements 
of the resulting Markov  parti t ions becomes much larger when one changes 
from S to S 2. This fact might  represent a serious problem if one wants to 
work on S M with M even slightly larger than two. 

Fig. 6. Markov partition of (s S 2) by 36 rectangles. 
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Consider now the experiments relative to a nonlinear area-preserving 
mapping S~ obtained by perturbing the linear automorphism S, 

x2 2xl + 2x2 + 2e cos x l J  
mod 2re 

with e > 0. This mapping, which is invertible for all e and hyperbolic at 
least for small e, has fixed points with both coordinates equal to ~, where 
is any solution of the equation ~ + e cos ~ = 0. One fixed point Po exists for 
any e, which tends to the origin as e tends to zero and is always unstable. 
Pairs of twin fixed points (Pk, P*), stable the former, unstable the latter, 
arise for e = ~k, ek being the solution of the equation 

(e 2 - 1 )1/2 + arcsin(1/e) = krc 

for k =  1, 2 ..... Around PI,  which appears at e~-~2.972, a region of regular 
motion takes place which is surrounded by a larger region of chaotic 
motion. P1 becomes unstable for e = e * ~ 5 . 3 6 3  bifurcating into a stable 
cycle of period two. We presume that each Pk, k~>2, has a behavior 
analogous to the one of P1. Being interested only in constructing Markov 
partitions of the system (s S~) for e < e~, we did not investigate further the 
properties of the map S~, although we think that it could be worth. 

The main problem in dealing with nonlinear transformations concerns 
the tracing of the stable and unstable manifolds. This problem, together 
with the associated fact that now the manifolds are curved lines, makes 
things complicated enough. Each invariant manifold can be approximated 
by numerically integrating a system of two first-order differential equations 
of the kind 

dxl dx 2 
dt = u l ( x l '  x2), dt - u 2 ( x l '  x2) 

where u~ and u2 represent the components of a unit vector tangent to the 
manifold at x = (xl,  x2). The functions ul and u2 can be computed taking 
advantage of the following consideration. Let S be the hyperbolic transfor- 
mation to be studied and as(x) [ccu(x)] the direction of W s ( W " )  at x. Con- 
sider an eigenvector v(fl)(x) =tv(n)~x~, 1 , ,  ,, v ~ ) ( x ) )  [v (~ 'O(x)=(v~) (x ) ,  v(2~,)(x))] 
associated with the smaller eigenvalue of the Jacobian of T" (T -n) at x, 
D T "  I x ( D T  ~ Ix). Then, as n tends to infinity, the ratios 
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(a) (b)  

(c) 

t \ 
/ 

\ 

(d) 

Fig. 7. (a) Seven-rectangle Markov partition of (~2, S) obtained by using the first method for 
e = 0.7; (b) as in (a) for e = 1.4; (c) non-Markovian partition for e = 2.8; (d) enlargement of the 
right lower corner of part (c) with the addition of two segments, one (nearly rectilinear) of the 
unstable manifold and one (curved) of the stable manifold, which intersect inside the same 
"rectangle" in three distinct points. In (a), (b), and (c) also the hyperbolic fixed point Po is 
represented. 

conve rge  to es(x)  a n d  c~u(x), respectively.  Hence ,  e , (x )  [ ~ u ( x ) ]  c an  be 
a p p r o x i m a t e d  by  c o m p u t i n g  the  ra t io  e~(n)(x) [c~(~n)(x)] for a n so as to 
g u a r a n t e e  the  accu racy  tha t  one  desires. W i t h  regard  to S~, the n u m b e r  n 
of  i t e r a t i ons  necessa ry  to o b t a i n  a n  accu racy  of N exact  dec ima l  figures for 
b o t h  ~ , (x)  a n d  c~u(x) d e p e n d s  o n  e. n is s l ight ly la rger  t h a n  N for smal l  e, 
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while it is about 2N for e close to el- In most of our experiments we used 
n = 10. We recall that 

and 

D 7  ~ Ix= D T l ~ , - , ( x )  . . . . .  DTITr D T t ~  

D T  -~ Ix = ( D T I T - I ( ~  . . . . .  DTIT- . (~ ) )  

The existence of the unstable fixed point P0 allows the use of the first 
method to construct Markov partitions of the system (•, S~). Figure 7 
exhibits the partitions corresponding to e equal to 0.7, 1.4, and 2.8. They 
were obtained stopping the tracing of the manifolds at the second intersec- 
tion, exactly as we did in the linear case to get Fig. 2. The sequence of pic- 
tures clearly shows how the partition changes with continuity as e is 
increased, starting from the partition of Fig. 2. The largest value of e that 
we considered was e = 3. In this case, which corresponds to the coexistence 
of a region of chaos with one of regular motion, the program still produces 
a partition which is similar to that of Fig. 7c. 

Just about the partition associated with e = 2.8, an important remark 
has to be made. For  this value of the parameter the behavior of the 
manifolds appear to have become quite intricated. Figure 7d, which 
corresponds to the right lower corner of Fig. 7c, shows one extra segment 
for each of the two manifolds and provides evidence for the presence of 
pairs x, y inside the same "rectangle" for which Ix, y ]  consists of more 
than one point. This fact says that the partition in question is no longer a 
rectangle partition, and then it is not a Markov partition although proper- 
ties (2.3) and (2.4) hold. 

Concerning the implementation of the second method, first of all it 
must be said that the nonlinearity does not allow the setting-up of a 
program as efficient as the one carried out for e = 0. Differently from that 
case, in fact, many operations of the algorithm are now quite difficult to be 
executed directly by the computer. So, instead of a program which works 
in an autonomous way, we have a program which works thanks to some 
help with which we supply the computer, interacting with it through the 
graphics. 

As regards the choice of the initial coverings, with a technique similar 
to that used in the linear case, it is possible to derive starting coverings 
with the requested property that every point x ~ ~2 is interior to at least one 
rectangle (Fig. 8). 

We computed several Markov partitions. Two of them, relative to 
e = 1, are shown in Fig. 9. They correspond to initial coverings by three 
and six S rectangles and consist of 15 and 29 elements, respectively. 
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Fig. 8. A six-rectangle covering of (f2, S~) for e = 1. 

Analogously to the linear case e = 0, the check of property (2.4) was carried 
out by drawing on the partition itself the image of each rectangle. We note 
that in no case the extension of the sides at step 3 of the algorithm was 
necessary. This fact is presumably due to a not at all random choice of the 
initial coverings. 

For  all the Markov partitions of (t2, S~) that we constructed, including 
the case of Fig. 7c, the associated transition matrix was computed. In all 
cases its largest eigenvalue turned out to be equal to 1/2, where 2 is the 
same as in the case e = 0. 

A deeper analysis of the mapping S~ and the possibility of constructing 
Markov partitions of ((2, S~) to study its dynamics for larger values of 
appear to be subjects worth to be possibly pursued at a future time. 

Finally, let us illustrate briefly some experiments that we made on a 
well-known dissipative mapping of the plane, 

H(xl, x2)=  (1 + x 2 -  axe, bxl) 

a and b being parameters. This mapping, introduced by H6non in 1976, (*) 
represents a very interesting model for chaos in dissipative dynamical 
systems. In fact, for a large set of parameter values and initial conditions 
there exists a strange attractor to which the sequence of points obtained by 
iteration tends. Most studies concerning the mapping have been carried out 
for b = 0.3; in particular, attention has been devoted to the strange attrac- 
tor present for a = 1.4, known as the H6non attractor. 

This attractor is enclosed in an invariant quadrilateral on which the 
mapping is not hyperbolic, but it is such in an "average sense." Hence, one 
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(a) 

Fig. 9. Two Markov partitions of (f2, S~) for 
g -1 ,  by (a)15 and (b)29 rectangles, respec- 
tively, obtained by using the second method. 
The partition in (b) is derived by starting from 
the covering of Fig. 8. (b) 

can try to apply to the Hdnon mapping the methods which work in the 
case of a hyperbolic system, to see whether a partition of the H6non attrac- 
tor comes out or not and, if it does, what is its meaning. We do not think 
that there exists a finite Markov partition; however, we do not consider 
useless to test the methods also in such a case of dissipative mapping. 

For  a > ( 1 -  b)2/4 the H~non mapping has two fixed points P and Q, 
given by 

xl = { b -  1 + [(1 -b)+4a]1/2}/2a,  x z = b x  1 

While Q, which is associated to the choice of the minus sign, is always 
unstable, P is unstable only for a > al = 3(1 -b )2 /4 .  We are interested in P 
because it is a common belief that the H6non attractor coincides with the 
closure of its unstable manifold. 
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Our experiments are based on the parametric representation of the 
stable and unstable manifolds of an unstable fixed point given in Ref. 13. 
Referring to it for the details, we recall here the property that is at the basis 
of the parametrization. W s and W ~ of the point P are characterized as the 
images of two immersions of R into R 2 such that 

m(ms(t)) = ms()clt), H(WU('c)) = W"()~2r ) 

where 21 and 22 are the eigenvalues of the Jacobian of H at P, with [211 < 1 
and 1221 > 1 (as it is for a>al). From the two relations it is evident that 
the fixed point corresponds to t = r = 0. 

The unstable manifold W~(r) is an infinite curve which is bounded. It 
is characterized by a longitudinal structure of pieces which are more or less 
parallel except for very short, in most cases sharp, arcs where the curve 
"turns back," and by a more complicated transversal structure of Cantor 
set. The most evident "turn back" arcs correspond to the first loops, 
starting from P, of WU(r), and contain all the remaining turnings in their 
interior. Then, roughly speaking, we can say that the whole H6non attrac- 
tor is contained inside the region delimited by a short piece of WU(z), say, 
for 1~] < 3. As regards the stable manifold WS(t), it is an unbounded curve 
with infinitely many returns to intersect W"(r) for t < 0 ,  while it rapidly 
diverges without coming back for t > 0. Numerical results strongly support 
the conjecture that for a large set of parameter values, including (a = 1.4, 
b=0.3) ,  the stable manifold WS(t) densely covers the unstable manifold 
W~(r). Figure 10, which corresponds just to (a = 1.4, b = 0.3), shows W~(r) 
for I~1 < 20 and its intersections with W~(t) for t E ( -  1000, 2). From these 
considerations it follows that it is possible to cover the H~non attractor by 
"rectangles" whose unstable and stable sides are pieces of W"(z) for low 
values of I~1 and pieces of WS(t) for negative t, respectively. 

At this point the application of the first method is straightforward. 
Some simple partitions are already implicitly drawn in Fig. 8. Let us con- 
sider the simplest partition, one by three "rectangles," which is represented 
in Fig. 11. The three elements R1, R2, and R 3 that compose the partition 
are given by PABC, PCDE, and EFGD, respectively, PA, BC, PC, DE, FG 
being the stable sides and AB, PC, CD, PE, EF, GD the unstable ones. The 
transition matrix T is given by tll = t22 = t23 = t31 = 0 ,  t12 = /13 = t21 = / ' 3 2  ~--- 

t33 = 1. The numerical values of the coordinates t and ~ of the points A, B, 
C, D, E, F, G can be easily computed with high accuracy. 

This partition satisfies properties (2.3) and (2.4), but it is not a rec- 
tangle partition. In fact, analogously to the partition of Fig. 7c, property 
(c) of Definition 2 fails because of the presence of segments of the unstable 
manifold which enter and leave some "rectangle" through the same stable 
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Fig. 10. Unstable manifold W"(r) and stable manifold WS(t) of the fixed point P of the 
H6non mapping for a = 1.4, b = 0.3. W~(~) is traced for ~ s (-20, 20), while W'(t) is pictured 
for t c (-1000, 2) lirnitedly to the rectangle [ -  1.4 ~< x ~< 1.4; -0.5 ~< y ~< 0.5 ]. The fixed point 
Q is also represented. 

side. This implies the possible existence of more than one point with the 
same H history. One can also verify directly that there exist T-compatible 
sequences which do not correspond to any point, for instance a sequence of 
the kind {...3213...}. 

We considered also finer partitions obtained by tracing longer 
segments of the two manifolds, up to a maximum of 16 elements. All such 
partitions exhibited the above phenomena. Also the construction of finite 
partitions by many more rectangles seems to be unable to overcome the 
problems. 

An experiment, however, seems worth trying. It would consist in the 
construction of a partition much finer and with the stable "sides" of some 
thickness. This way, which is the same as requiring some low accuracy in 
the approximation of the stable manifold, it might be possible to include 
inside the stable "sides" all the pieces of the unstable manifold that prevent 
the partition from being a rectangle partition. From the point of view of 
the applications, such an "approximate  Markov partition" could be of 
some utility. Possibly, we will conduct this experiment next. 



90 Franceschini and Zironi 

(D 

o 

o 
t t~  

c; 
I 

E 

G 

I I I 

- I  . 40  

Fig. 11. 

I I I I I I I I I I I I 

X 1 .40  

Non-Markovian  partition of the H~non attractor. 

I 

To conclude the description of our computer experiments on the 
H6non mapping we shall spend a few more words about the fact that also 
the second method was successfully applied to obtain the same partitions 
that were derived by using the first method. The application was not as 
immediate as before and required some fitting to the case in question. Hav- 
ing in mind how the limit covering had to be, we chose the starting cover- 
ing in an appropriate way, with the unstable sides of the "rectangles" 
already satisfying property (2.3). Hence, the iterative procedure was needed 
only to correct the position of the stable sides. For  this reason we were able 
to utilize the parametric representation of the manifolds given in Ref. 13 
only in the case of W"(z). The stable manifold was computed by applying 
the same technique used for the nonlinear mapping S~. Another particular 
although not substantial modification to the method was necessary. It con- 
sisted in forcing each stable side to be transformed by H into some 
predetermined stable side. However, in order not to make the paper even 
heavier, we will not enter into further details. 
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